Администратор
Команда форума
Администратор
Модератор
VIP Разбойник
- #1
Голосов: 0
0.0
5
0
0
https://tor15.sharewood.me/threads/udemy-nikita-sergeev-analitika-v-spss-ot-novichka-do-uverennogo-polzovatelja-2021.167049/
Автор: Udemy
Название: Nikita Sergeev - Аналитика в SPSS: от новичка до уверенного пользователя (2021)
Чему вы научитесь
Подробнее:
Скачать:
Название: Nikita Sergeev - Аналитика в SPSS: от новичка до уверенного пользователя (2021)
Чему вы научитесь
- Загрузка и импорт данных из разных источников
- Преобразование и чистка данных, подготовка массива к анализу
- Описательные статистики: среднее, мода, медиана, квартили и т.д.
- Прогностическая\предиктивная аналитика
- Поиск различий между группами
- Идентификация скрытых взаимосвязей между переменными
- Классификационные задачи (отдаст\не отдаст кредит, купит\не купит товар и т.д.), построение нейросетей
- Анализ временных рядов, поиск закономерностей и прогнозирование
- Основы работы с синтаксисом
- Другие возможности программы SPSS
- Наличие программы SPSS, либо готовность установить с официального сайта IBM ее 30-дневную бесплатную версию
- Умение инсталлировать программы (у кого нет SPSS - необходимо будет инсталлировать официальную версию с сайта)
- Кто будет работать с бесплатной временной 30-дневной версией программы - будьте готовы уделить требуемое для прохождения курса время в течение 30 дней до завершения действия регистрации (т.е., в среднем необходимо будет проходить не менее 5 лекций в день + дополнительно решать все сопутствующие им задания )
- Очень желательно (но не обязательно) знание хотя бы основ матстатистики (а в идеале полноценные знания всех подходов, методов и критериев - так легче будет понять курс, который больше нацелен на работу с программой SPSS, а не разбор всех статкритериев)
- Если Вы совсем незнакомы с базовыми понятиями статистики (выборка, генсовокупность, массив данных и т.д.), то нужно уметь открывать Excel и проводить в нем простейшие математические вычисления (+, -, \, *, подбить %). Понимание некоторых базовых понятий в рамках курса будет отрабатываться в Excel.
- Желательно (но совершенно не обязательно) опыт преобразований и обработки данных, а также вычислений в Excel, или Power Query \Pivot, или в Power BI
- От автора книги "АНАЛИТИКА И DATA SCIENCE: для не-аналитиков и даже 100% гуманитариев..." (в продаже в крупнейших онлайн магазинах: AMAZON, OZON, ЛитРес, RIDERO...), а также одной из первых книг отечественных авторов по работе с компонентом Power Query для Excel и Power BI "Power Query: учебное руководство".
- Не имеющий аналогов на русскоязычном пространстве курс в виде "коктейля" из основных предметных знаний (описательная и аналитическая статистика) и прикладной работы в программе (SPSS) - и все на минимально достаточно уровне для понимания методов и принятия решений.
- Это самое полное русскоязычное собрание основных современных методов анализа данных для не-технических дисциплин в одном курсе. Данные материал является нарезкой из более крупного курса для корпоративных заказчиков - и в нем собрано самое основное для бизнес-пользователя.
- Курс очень постепенно от простого к сложному погружает профессионалов из не-технических наук (менеджмент, бизнес, гуманитарии, лингвисты, психологи, социологи, культурологи, экономисты, политтехнологи и т.д.) в захватывающий анализа данных и поиска скрытых закономерностей и методов прогностической аналитики – и поможет легко в нем ориентироваться, пользоваться и не бояться.
- Курс также подойдет для профессионалов инженерно-технических специальностей, которые не изучали анализ данных, но хотят в нем разобраться - без непонятных формул и громоздких расчетов.
- В основе курса самые современные материалы, демонстрирующие возможности использования программы SPSS в разных областях (маркетинговые и социологические исследования, исследования персонала, опросы мнений, разработка психодиагностического инструментария и тестов, анализ и прогнозирование и т.д.)
- Материал курса достаточен для того, чтобы новичок (студент или впервые столкнувшийся со статистикой специалист) смог сделать свои первые шаги в обобщении статистических данных и поиске скрытых закономерностей, а умудренные опытом профессионалы систематизировали знания, а также расширили понимание их применения.
- Собраны и очень доступно рассмотрены наиболее популярные методы статистического анализа и прогностической аналитики, универсальные для всех наук и профессий.
- Объем курса (почти 200 лекций + допматериалы + более 100 основательных практических заданий, отлично раскрывающих темы) рассчитан на полноценные 8 тренинговых дней! Поэтому не ориентируйтесь на длительность только 25-часового лекционного видео-материала: для полноценного прохождения курса Вам понадобится инвестировать до 60 часов чистого времени.
- Материал предназначен для широкого круга слушателей, специализирующихся на обработке данных как гуманитарных и социально-экономических (менеджмент, бизнес, маркетинг, социология, психология, криминалистика....), так и инженерных и естественных профессий (биология, медицина, ИТ, физика...).
- Автор курса аналитик-практик; эксперт по анализу данных, владеющий обширным статистическими инструментарием (от обычного Excel до последних версий SPSS и специального языка программирования R). Создатель ряда МВА-программ и тренингов для высшего и старшего менеджмента корпораций. В консалтинговой практике занимается диагностикой предприятий и анализом данных, проектированием бизнес- и операционных моделей.
- Полученные в курсе знания пригодятся даже тем, кто планирует начинать работу с языками программирования (R, Py) - изучая и применяя эти языки Вы уже будете ориентироваться как решаемых задачах, так и в методах, которые в них реализуются (ибо методы сходны с рассматриваемыми в этом курсе на уровне пользовательских интерфейсов)
- Аналитики любых отраслей и бизнес-функций
- Менеджеры и профессионалы не-технических и гуманитарных специальностей (маркетинг, менеджмент организаций, HR, экономика, социология, политология, управление проектами, риск-менеджмент и т.д.), желающие принимать взвешенные бизнес-решения на основе данных
- Технические и инженерные специалисты, планирующие развиваться в области Data Science - курс даст крепкую базу для любого более технического обучения в области Data Science
- Управленческие консультанты, работающие с проектами с высокой долей неопределенности и вероятностями
- Преподаватели и студенты
- Ученые и исследователи
- Для интересующихся анализом данных, поиском закономерностей и Data Science - в общем всех желающих идти в ногу со временем и разбираться в анализе данных
Подробнее:
Для просмотра содержимого вам необходимо авторизоваться.
Скачать:
Для просмотра содержимого вам необходимо авторизоваться
Последнее редактирование: