Уверенная в себе
Команда форума
Редактор
Премиум
Активный участник
- #1
Голосов: 0
0.0
5
0
0
https://tor15.sharewood.me/threads/mfti-matematika-dlja-analiza-dannyx-chast-1-2020.152025/
Автор: МФТИ
Название: Математика для анализа данных. Часть 1 (2020)
Программа курса:
Дискретная математика, 1 неделя:
Вы научитесь использовать теорию множеств для формализации математических идей, получите представление об основных комбинаторных объектах и их свойствах, научитесь решать задачи по комбинаторике: такие задачи часто встречаются на собеседованиях в IT-компании.
Математический анализ, 2 недели:
Вы изучите теоретические основы математического анализа в том объеме, который необходим каждому Дата Сайентисту: познакомитесь с понятиями предела, производной и интеграла, научитесь дифференцировать и интегрировать. Также в этой главе вы изучите важнейший для обучения нейросетей аппарат минимизации значений функций.
Линейная алгебра и аналитическая геометрия, 2 недели:
Вектор - это основная сущность для любой модели машинного обучения. Поэтому векторную алгебру должен свободно уметь применять любой исследователь данных. Вы научитесь производить операции над векторами и матрицами, получите геометрическую интуицию векторного пространства и узнаете, как линейная алгебра применяется в анализе данных.
Теория вероятностей, 2 недели:
Теория вероятностей кроется за каждой моделью машинного обучения. Вы изучите основы теории вероятностей, научитесь работать со случайными величинами, вычислять математическое ожидание и дисперсию, а также узнаете, почему данные часто имеют нормальное распределение.
Математическая статистика и элементы аналитики, 2 недели:
Статистический анализ - это незаменимый инструмент исследования данных. Вы изучите способы извлечения простейших закономерностей из данных, научитесь формулировать и проверять гипотезы о данных, овладеете корреляционным анализом.
Подробнее:
Скачать:
Название: Математика для анализа данных. Часть 1 (2020)
Программа курса:
Дискретная математика, 1 неделя:
Вы научитесь использовать теорию множеств для формализации математических идей, получите представление об основных комбинаторных объектах и их свойствах, научитесь решать задачи по комбинаторике: такие задачи часто встречаются на собеседованиях в IT-компании.
Математический анализ, 2 недели:
Вы изучите теоретические основы математического анализа в том объеме, который необходим каждому Дата Сайентисту: познакомитесь с понятиями предела, производной и интеграла, научитесь дифференцировать и интегрировать. Также в этой главе вы изучите важнейший для обучения нейросетей аппарат минимизации значений функций.
Линейная алгебра и аналитическая геометрия, 2 недели:
Вектор - это основная сущность для любой модели машинного обучения. Поэтому векторную алгебру должен свободно уметь применять любой исследователь данных. Вы научитесь производить операции над векторами и матрицами, получите геометрическую интуицию векторного пространства и узнаете, как линейная алгебра применяется в анализе данных.
Теория вероятностей, 2 недели:
Теория вероятностей кроется за каждой моделью машинного обучения. Вы изучите основы теории вероятностей, научитесь работать со случайными величинами, вычислять математическое ожидание и дисперсию, а также узнаете, почему данные часто имеют нормальное распределение.
Математическая статистика и элементы аналитики, 2 недели:
Статистический анализ - это незаменимый инструмент исследования данных. Вы изучите способы извлечения простейших закономерностей из данных, научитесь формулировать и проверять гипотезы о данных, овладеете корреляционным анализом.
Подробнее:
Для просмотра содержимого вам необходимо авторизоваться.
Скачать:
Для просмотра содержимого вам необходимо авторизоваться
Последнее редактирование модератором: